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The very large kBr/kCl leaving group effects of  2300–4500
for solvolysis of  1-halospiro[adamantane-2,29-adaman-
tane] compounds in slightly ethanolic or aqueous acetone
are consistent with the occurrence of  F-strain.

Recently, we showed 1 that 1-chlorospiro[adamantane-2,29-ada-
mantane] 1a solvolyses rapidly, about 108 times faster than

1-chloroadamantane, even in solvents of poor to moderate ion-
ising power (YCl range of 23.2 to 20.8). This observation was
in accord with indications of considerable F-strain within 1a,
based on calculations using Allinger9s MM2(85) force field 2 for
a series of substrates, including 1a, and the MM2 force field
with the addition of the UNICAT 4 parameter set 3 for the
derived carbocations. In the corresponding acetate the oxygen
atom attached to C-1 is less than 2.3 Å from the nearest methyl-
ene hydrogens,4 substantially less than the sum of the van
der Waals radii of the oxygen and hydrogen atoms (2.6 Å).
The thermal rearrangements of 1a and of 1-bromospiro-
[adamantane-2,29-adamantane] 1b have been shown to give
good yields of the corresponding secondary 4-halo derivative,
and a fragmentation–recombination mechanism, favoured by
the ease of forming the required intermediate tertiary cation,
was proposed.5 Appreciable F-strain effects had been indicated
previously for a 2-substituted 1-adamantyl system by the obser-
vation that (Z)-2-ethylidene-1-adamantyl derivatives solvolyse
about 103 times faster than the corresponding (E) isomers.6

For those solvolytic displacement reactions which are influ-
enced by F-strain effects, one would predict that, when two
leaving groups are compared kinetically, there will be a steric
bulk effect superimposed upon the usual nucleofugality effect,
and that this effect will be especially important when the change
concerns the atom directly attached to the α-carbon.7 In par-
ticular, one would expect that enhanced kBr/kCl values will be
observed for identical solvolyses of 1a and 1b. It has been sug-
gested that the small increases in the Br/Cl rate ratios as one
goes from primary to secondary to tertiary halides are due to
F-strain effects.8

A large effect is already indicated by the semi-quantitative
observation that, while 1a can be manipulated under conditions
of reasonably low humidity, the same conditions lead to rapid
hydrolysis of 1b, which has been isolated only with contamin-
ation by the corresponding 1-hydroxy compound.5,9 Micro-

analysis of a sample of 1b (stored under vacuum), immediately
prior to use in kinetic experiments, gave values of 69.1 and 8.3%
for carbon and hydrogen, respectively, consistent with a mixture
which is 93% 1b and 7% the corresponding 1-hydroxy com-
pound. Further quantitative support for a large element effect
came from the observation that, while 1a can be kept with very
little loss as a 0 8C solution in carefully purified acetone10 for
several days, 1b solvolyses in acetone at 0 8C with a half-life of
only 32 min. Acetone has been shown to be an effective nucleo-
phile. For example, in the solvolysis of 2-octyl bromobenzene-
sulfonate in acetone-rich solvents, the acetoxonium ion is
formed and, in the presence of either water or methanol, pro-
ceeds to octan-2-ol.11

Since 1b solvolysed extremely rapidly in the solvents used in
the previous study of 1a,1 both 1a and 1b were studied at 0.0 8C
in acetone containing 1% water or 2–5% ethanol (Table 1). Even
under conditions considerably more severe (refluxing for 20 h
with hydrochloric acid in aqueous DMF) 9 than those employed
here, 1b is converted only to the corresponding 1-hydroxy com-
pound. We assume, therefore, that nucleophilic substitution is
the sole reaction under our conditions. The kBr/kCl ratios of
2300–4500 are considerably higher than values previously
reported for other systems. These data can be compared, for
example, with the specific rates of solvolysis for benzhydryl hal-
ides under more typical conditions, which correspond to kBr/kCl

values of 22 in 80% acetone at 25 8C12a and 34 in 90% acetone at
50 8C,12b while for tert-pentyl halides in 80% ethanol at 25 8C
the ratio is 40.12c

Table 1 Specific rates of solvolysis of the 1-halospiro[adamantane-
2,29-adamantane] compounds 1a (X = Cl) and 1b (X = Br) at 0.0 8C a

Solvent (v/v) kBr/1024 s21b kCl/1027 s21b kBr/kCl
c

Acetone
Acetone–EtOH (98 :2)
Acetone–EtOH (97 :3)
Acetone–EtOH (96 :4)
Acetone–EtOH (95 :5)
Acetone–H2O (99 :1)

3.56 ± 0.21
7.37 ± 0.19
8.81 ± 0.20
10.9 ± 0.5
24.8 ± 1.4
24.7 ± 1.8

ca. 0.5
2.09 ± 0.17
3.58 ± 0.29
4.80 ± 0.27
6.77 ± 0.14
5.51 ± 0.14

3530
2460
2270
3620
4480

a Kinetics followed by titration of developed acid. b With associated
standard deviations. c k1b/k1a.

Table 2 The kBr/kCl ratios for (CH3)3CX solvolyses (or decomposi-
tions) in various solvents.a

Solvent kBr/kCl

HOAc
MeOH
EtOH
Nitromethane
Acetone
DMF

15
23
52

479
589
724

a Values at 25.0 8C from a compilation by Abraham (ref. 13) of specific
rates from the literature.
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The maximum values previously observed have been for reac-
tions in non-hydroxylic solvents, and Abraham 13 has compiled
(logarithmic) specific rate constants for reactions at 25 8C of
tert-butyl bromide and chloride in both hydroxylic and non-
hydroxylic solvents. Some typical kBr/kCl values derived from
these data are reported in Table 2. The highest ratios are for the
non-hydroxylic solvents but they are still appreciably lower than
for the solvolyses of 1a and 1b in acetone containing fairly
small amounts of ethanol or water (Table 1). A measure of the
influence of the addition of water to an aprotic solvent can be
obtained from studies of the solvolyses of the tert-butyl halides
in aqueous dioxane.14 The kBr/kCl values of 48, 58 and 73 in 70,
80 and 90% dioxane, respectively, rise with increase in the pro-
portion of the aprotic component but, even at 90% dioxane,
they are considerably less than in a pure aprotic solvent (Table
2). It follows that the kBr/kCl rate ratio for reactions of tert-butyl
halides in a non-hydroxylic solvent must show a marked
decrease upon addition of small amounts of a hydroxylic com-
ponent, which means that the value of 589 in acetone should be
considered as very much a maximum value compared to the
higher ratios in Table 1.

The MM2 steric energies of typical bridgehead tertiary
bromides are about 0.6 kcal mol21 (1 cal = 4.184 J) higher than
those of the corresponding chlorides, whereas for 1a and 1b
the difference is 3.0 kcal mol21. In a previous correlation1 of
p-toluenesulfonate solvolysis rates (data for other leaving
groups being normalised) against steric energy differences,
∆Est(R

+ 2 RCl), it was found that only 40% of the latter was
reflected in log kOTs. This would suggest that if  bridgehead
bromides followed the same sort of correlation,15 then the
kBr/kCl ratio for the 1-spiro[adamantane-2,29-adamantane]
system would be enhanced relative to the value for other
bridgehead systems by a factor of only ca. 10. Data on ‘other
bridgehead systems’ include an extrapolated value of about 40
for 1-haloadamantanes in ethanol at 25 8C.8 Using a tabulation,
largely of extrapolated values, by Bingham and Schleyer,16a

Bentley and Roberts16b have reported for five bridgehead
halides, including the 1-adamantyl system, kBr/kCl ratios in
the range of 32–47 for solvolyses in 80% ethanol at 70 8C.
Incorporation of the factor of 10 (see above) leads to a kBr/kCl

ratio of only 400 for 1, neglecting, however, the difference in
solvents. Moreover, the fact that the tosylate equivalents of 1a
and 1-chloroadamantane lie some 3 and 1.8 log units, respect-
ively, above the log kOTs vs. ∆Est(R

+ 2 RCl) correlation indicates
that their reactivities, particularly that of 1a, are not well mod-
elled, casting some doubt on the small leaving group steric
effect predicted by molecular mechanics.

In conclusion, 1-bromospiro[adamantane-2,29-adamantane]
1b is much more reactive than the chloro compound 1a, with
kBr/kCl ratios for solvolyses in acetone (containing small
amounts of water or ethanol) that are substantially higher than
values previously obtained for substitution and/or elimination
reactions of other tert-alkyl halides, even in non-hydroxylic
solvents. Relief  of F-strain would appear to be largely respon-
sible for this enhancement.
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